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Based on the Boltzmann–Enskog kinetic theory, we develop a hydrodynamic theory for
the well known (reverse) Brazil nut segregation in a vibrofluidized granular mixture.
Under strong shaking conditions, the granular mixture behaves in some ways like a
fluid and the kinetic theory constitutive models are appropriate to close the continuum
balance equations for mass, momentum and granular energy. Using this analogy with
standard fluid mechanics, we have recently suggested a novel mechanism of segregation
in granular mixtures based on a competition between buoyancy and geometric forces: the
Archimedean buoyancy force, a pseudo-thermal buoyancy force due to the difference
between the energies of two granular species, and two geometric forces, one compressive
and the other-one tensile in nature, due to the size-difference. For a mixture of perfectly
hard-particles with elastic collisions, the pseudo-thermal buoyancy force is zero but
the intruder has to overcome the net compressive geometric force to rise. For this case,
the geometric force competes with the standard Archimedean buoyancy force to yield
a threshold density-ratio, Rρ1 = ρl/ρs < 1, above which the lighter intruder sinks,
thereby signalling the onset of the reverse buoyancy effect. For a mixture of dissipative
particles, on the other hand, the non-zero pseudo-thermal buoyancy force gives rise
to another threshold density-ratio, Rρ2 (>Rρ1), above which the intruder rises again.
Focussing on the tracer limit of intruders in a dense binary mixture, we study the
dynamics of an intruder in a vibrofluidized system, with the effect of the base-plate
excitation being taken into account through a ‘mean-field’ assumption. We find that
the rise-time of the intruder could vary nonmonotonically with the density-ratio. For
a given size-ratio, there is a threshold density-ratio for the intruder at which it takes
the maximum time to rise, and above(/below) which it rises faster, implying that the
heavier (and larger) the intruder, the faster it ascends. The peak on the rise-time curve
decreases in height and shifts to a lower density-ratio as we increase the pseudo-thermal
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buoyancy force. The rise (/sink) time diverges near the threshold density-ratio for
reverse-segregation. Our theory offers a unified description for the (reverse) Brazil-nut
segregation and the nonmonotonic ascension dynamics of Brazil-nuts.

KEY WORDS: Granular mixture; Brazil-nut segregation, Reverse buoyancy; Non-
monotonic rise velocity.

1. INTRODUCTION

The phenomenon of segregation, in which a homogeneous mixture of par-
ticles of different species becomes spatially non-uniform by sorting themselves
in terms of their size and/or mass, is ubiquitous in numerous chemical and phar-
maceutical industries, dealing with the transport and handling of bulk granular
mixtures.(1,2) For most industrial processes, it is required to maintain a homo-
geneous mixture during processing, with the segregation being the ‘unwanted’
phenomenon. Despite its unwanted consequences, however, segregation occurs
spontaneously in driven granular mixtures.(3–13)

When a mixture of different particles is subjected to vertical shaking in a
container, the larger particles (intruders) rise to the free surface. This is known as
the Brazil-nut phenomenon (BNP), and is one of the most puzzling phenomena
of granular materials research, still lacking a proper theoretical explanation. The
early experimental investigations on the Brazil nut phenomenon(2,4–6) were mainly
concentrated on the effect of size of the intruder particle in vibrated systems.
Besides experiments, computer simulations have been extensively used to study
segregation.(3,7–9) In fact, the current interest within the physics community on
granular segregation was stimulated by the Monte Carlo simulations of Rosato
and co-workers.(3) They explained BNP as a percolation effect since the smaller
particles can easily percolate down to fill the void, created behind the larger
particles due to external shaking, which, in turn, pushes the larger particle to the
top. However, we need to point out that such percolation effects are likely to be
active in a dense bed only under weak-shaking conditions.

In many experimental setups convection is unavoidable(4,6) and seems to be
a key ingredient to drive segregation.(4,6,8) In the regime of convection-driven
segregation,(4) it has been experimentally verified that the large particles rise
with an upward-plume of the surrounding bed at the center of the container, but
cannot sink to the bottom since they are unable to fit themselves in a narrow
downward-plume near the side-walls. It has subsequently been verfied, via careful
MD simulations,(8) that convection-driven segregation dominates (over percola-
tion) in deep beds. In this scenario the intruder particles with different sizes rise
at approximately the same rate.(4)

However, a regime where convection is negligible has also been found in
some experiments(5) as well as in many idealized simulations.(3,7,9) The most
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striking observation in this case is the dependence of the segregation-rate on the
particle-size, where the ascending velocity of the intruder particle increases with
its size.(5,7) It has been found that there is a threshold size-ratio for the intruder
above (/below) which the intruders rise (/sink).

A series of recent discoveries have shown that the Brazil nut phenomenon
is more intricate than it might seem. The subject took a major step forward with
the papers of Shinbrot and Muzzio(10) and Hong et al.(11) In 1998 Shinbrot and
Muzzio(10) discovered a reverse buoyancy effect: while a large heavy intruder rises
to the free surface, an equally large but light intruder sinks to the bottom of the
granular bed. Three years later Hong et al. (11) introduced a phenomenological
theory for the reverse Brazil nut phenomenon (RBNP): a competition between
percolation and condensation, depending on the size and the mobility of the
intruder particles, could drive the intruders to sink to the bottom of the container
and vice versa. The key idea of this theory is that a monodisperse system of
particles can be fluidized above a critical temperature (Tcr), assuming that the
system is shaken uniformly. Hence, if a binary mixture is vibrated such that
the mixture temperature lies between the critical temperatures of two individual
species, then one species will be in a fluidized state and the other condenses at the
bottom, leading to segregation. Immediately the subject attracted the attention of
researchers who performed new experiments.(12,13)

As mentioned before, different mechanisms have been proposed to explain the
segregation phenomenon, for example, percolation,(3) arching,(5) convection,(4,6,8)

inertia,(10) condensation(11) and interstitial-fluid effects.(12) Unfortunately, while
the observational evidence accumulates,(2–10,12,13) relatively little work exists on
a unified theory for the dynamics of Brazil nuts.(11,15–17) Recently, Jenkins and
Yoon(17) developed a theory for the segregation of elastic particles using hydrody-
namic equations of binary mixtures. They investigated the upward-to-downward
transition introduced in ref. 11 even though their prediction of the phase dia-
gram for the BNP/RBNP-transition did not match with the simulation results of
Hong et al. Interestingly, none of these early theories considered either the non-
equipartition of granular energy (which is a generic feature of granular mixtures)
or the effect of external driving forces. Thus, it appears that a comprehensive
theoretical description for the dynamics of Brazil nuts is still lacking.

A hydrodynamic model to include the effect of the non-equipartition of gran-
ular energy was postulated in ref. 18 where a new mechanism for segregation due to
buoyant forces was introduced, drawing a direct analogy with the buoyancy forces
in fluids. More recently, a minimal hydrodynamic model for segregation was out-
lined in ref. 19, starting from the Boltzmann–Enskog-level continuum equations
for a dense binary mixture of fluidized granular materials. The important effect of
dissipation, which is responsible for the non-equipartition of the granular energy,
was also incorporated. This latter work clearly shows how one could derive a time-
evolution equation for the relative rise velocity of the intruder from first principles,
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thereby making the analogy with standard fluids transparent (which has a history
of more than a century, with the seminal works of Stokes, Oseen, Boussinesq, etc).
It was argued in ref. 19 that the BNP/RBNP segregation dynamics results from a
competition between buoyancy and geometric forces. This analysis(19) appears to
be compatible with the experimental observations reported by Breu et al.(13) and
also agrees with the molecular dynamics simulations reported by Hong et al.(11)

In view of the good qualitative agreement of our model(19) with the experi-
mental observations presented by Breu et al.,(13) it is worth attempting to construct
a theory for segregation in granular materials using the kinetic theory of inelastic
hard particles. We show that a granular hydrodynamic theory does indeed provide
a good description for the dynamics of Brazil nut segregation.

This paper is organized as follows. In Section 2 we introduce the kinetic
theory for inelastic hard particles, by summarizing the principal definitions of the
model and presenting the balance equations for the mixture. The problem of the
non-equipartition of kinetic energy is considered in 2.2.2. The main results of
this paper are presented in Section 3, where the detailed theory for segregation
is outlined. The evolution equation that governs the segregation dynamics of
intruders in the dense collisional regime is outlined in 3.1. We then comment on
the origin of different ‘gravitational’ segregation forces derived from the model
in Section 3.2.1, followed by a discussion on the origin of the unsteady forces that
act on the intruders in Section 3.2.2. In Section 4 we discuss the phase-diagram
for the BNP/RBNP transition in three-dimensions (i.e. for spherical particles),
thereby verifying that the competition between the buoyancy and geometric forces
drives the segregation process in a fluidized mixture. In addition, we explain the
reverse buoyancy effect of Shinbrot and Muzzio(10) in Section 4.1. In Section
5 we apply our theory to probe the dynamics of intruders in the tracer limit,
thereby explaining some recent experimental observations on the non-monotonic
rise-time(12) of the intruder (with the density-ratio) as well as the divergence of
the rise(/sink) time near the BNP/RBNP transition. In Section 6.1 we provide
a simple analytical explanation for the RBN effect, focusing on the Boltzmann
(dilute) limit. In Section 6.2 we discuss the possible higher-order effects of the non-
Maxwellian velocity distribution on segregation forces, along with suggestions on
some experimental implications of the present work. The conclusions and the
limilations of our theory are detailed in Section 7.

2. KINETIC THEORY OF GRANULAR MIXTURES

We assume that granular matter can be described at the ‘macroscopic’ level by
a set of continuous hydrodynamic equations as a fluid–mechanical medium. The
balance equations and the constitutive relations can be derived from a kinetic the-
ory description. For granular media the kinetic equations are modified to account
for the inelastic nature of the collisions between particles.(14) These equations
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have been extended to binary mixtures.(20–22) The validity of the hydrodynamic
approach even in the dense limit has recently been justified via a comparison of
the theory with various experiments.(23)

Theoretical and numerical studies for binary granular mixtures have shown
that the two components have different kinetic (fluctuation) energies(20,22,24–26)

which has also been confirmed in vibrofluidized experiments.(27) Recently, Alam
and Luding(24,25) have demonstrated that a proper constitutive model for granular
mixtures must incorporate the effect of the non-equipartition of granular energy.
Therefore, in the present model we consider this breakdown of equipartition on
the kinetic energy and this is a fundamental difference with previous related
studies.(11,16,17)

The following subsection intends mainly to establish some notational con-
ventions used throughout the paper and recall some basic definitions on granular
hydrodynamics. Here we follow the lines of refs. 20 and 21 in the introduction of
the kinetic theory model and refs. 24 and 25 in the discussion of the breakdown
of the equipartition of the kinetic energy.

2.1. Definitions

As a mechanical model for a granular fluid we consider a binary mixture of
slightly inelastic, smooth particles (disks/spheres) with radii ri (i = l, s, where l
stands for large particles and s for small), mass mi in two or three dimensions
(d = 2, 3). The coefficient of restitution for collisions between particles is denoted
by ei j , with ei j ≤ 1 and ei j = e ji .

The average macroscopic quantities are calculated by taking appropriate
moments of the corresponding microscopic (particle-level) property in terms of
the single particle velocity distribution function fi (c, r, t) for each species. By
definition fi (c, r, t)dcdr is the total number of particles which, at time t , have
velocities in the interval dc centered at c and positions lying within a volume
element dr centered at r, i.e.,∫

fi (c, r, t)dcdr = Ni .

If the particles are uniformly distributed in space, so that fi is independent of r,
then the number density ni of species i is

ni =
∫

fi (c, r, t)dc,

and the total number density is n = nl + ns . The species mass density �i is defined
by the product of ni and mi , and the total mixture density is

� = �l + �s = ρlφl + ρsφs,
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where ρi is the material density of species i and φi is the d-dimensional volume
fraction for species i :

φi = �d

d
nir

d
i ,

where �d is the surface area of a d-dimensional unit sphere.
The mean value of any quantity ψi = ψ(c) of a particle species i , is

〈ψi (c)〉 ≡ 1

ni

∫
ψi (c) fi (c)dc.

The mean velocity of species i is ui = 〈ci 〉. The mass average velocity u of the
mixture is defined by

u ≡ 1

�
(�lul + �sus).

The peculiar (fluctuation) velocity of species i is Ci ≡ ci − u, and the diffusion
velocity is vi ≡ 〈Ci 〉 = ui − u. The species “granular temperature” is defined
proportional to the mean kinetic energy of species i

Ti ≡ 1

d
mi 〈Ci · Ci 〉 ,

and the mixture temperature is

T ≡ 1

n
(nl Tl + ns Ts).

Let us remark that this generalized notion of temperature is introduced for a theo-
retical convenience to take advantage of a thermodynamical analogy for granular
materials, and thereby postulating a higher-order field variable. Even though the
definition of thermodynamic variables for non–equilibrium states is straightfor-
ward theoretically, the thermodynamics of non–equilibrium states has always been
a matter of debate which we will not touch upon here.

2.2. Mixture Granular Hydrodynamics

The evolution of the granular system is governed by the well known balance
equations for the mixture density, momentum and energy:

�̇ = −�∇ · u, (1)

�u̇ = −∇ · P +
∑
i=l,s

ni Fi , (2)

ρ̄
d

2
Ṫ = T ∇ · j − ∇ · q − P : ∇u +

∑
i=l,s

ji · Fi − D, (3)
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where the overdot indicates the convective derivative: ∂t (·) + u · ∇(·). Here, P is the
mixture stress tensor, Fi is the external force acting on the particle, q is the mixture
energy flux, j is the diffusive mass-flux and D is the total inelastic dissipation rate.
These equations are rigorous consequences of the Enskog–Boltzmann kinetic
equation,(28) extended to inelastic particles,(20,21) and must be supplemented with
respective constitutive equations for P, q, j and D. For ei j = 1, the collisional
dissipation rate vanishes (D = 0), and consequently we recover the standard energy
balance equation for a mixture of elastic hard spheres.(28).

2.2.1. Species Balance Equations and Fluxes

The species momentum balance equation is:

∂t (ni ui ) + ∇ · (ni ui ui ) = − 1

mi
∇ · Pi + ni

mi
Fi + �i , (4)

where �i is the momentum source which arises due to the interaction between
unlike particles and

∑
i=l,s �i = 0. In the limit of small spatial inhomogeneities

(i.e. first order in the gradients of the mean fields) the species stress tensor Pi has,
at the Navier-Stokes level, the standard Newtonian form

Pi = pi I + µi (∇u + ∇uT ), (5)

where pi is the partial pressure of species i , µi is the viscosity of of species i and
I the unit tensor. The equation of state for the partial pressure of species i can be
written as:(20,21)

pi = ni Zi Ti , (6)

where Zi is the “compressibility” factor of species i ,

Zi ≡ 1 +
∑
j=l,s

Ki j , (7)

and

Ki j ≡ 1

2
φ jχi j (1 + Ri j )

d . (8)

Here χi j is the contact value of the radial distribution function and Ri j = ri/r j

the size ratio. The radial distribution functions of granular systems are often
approximated by their elastic counterpart (see, for example,(20,21) and for related
issues(29)). In this paper we use the following functions for disks:(30)

χi j = 1

1 − φ
+ 9

8

φl Ril + φs Ris

(1 + Ri j )(1 − φ)2
, (9)
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and for spheres:

χi j = 1

1 − φ
+ φl Ril + φs Ris

(1 + Ri j )(1 − φ)2

[
3 + 2(φl Ril + φs Ris)

(1 + Ri j )(1 − φ)

]
. (10)

An explicit expression for the momentum source term can be written as:(20)

�i = ni Kik T

[(
mk − mi

mik

)
∇ (ln T ) + ∇

[
ln

(
ni

nk

)]

− 4

rik

(
2mi mk

πmik T

)1/2

(ui − uk)

]
, (11)

where mik = mi + mk and rik = ri + rk , with i �= k. In deriving the above expres-
sion, it has been assumed that the single particle velocity distribution function of
species i is a Maxwellian at its own granular energy Ti :

fi (c, z, t) = ni

(
mi

2πTi

)d/2

exp

(
−mi (c − ui )2

2Ti

)
. (12)

This represents the zeroth-order approximation for the distribution function which
has recently been verified in molecular dynamics simulations of vibrofluidized
binary granular mixtures.(31) Higher-order corrections to the distribution function
would appear beyond the Euler-level description that we neglect in the present
work (see discussion in VI.B).

The energy balance equation of species i is

∂t (ni Ti ) + ∇ · (ni ui Ti ) + ∇ · Qi + Pi : ∇u

−ni Fi · vi − �i

�
vi · (∇ · Pi − nF) = Di , (13)

and the mixture energy flux is defined as

q =
∑
i=l,s

ni Ti + Qi , (14)

where Qi is the energy flux of species i :

Qi = κi

√
Ti∇Ti , (15)

and κi is the analog of thermal conductivity of species i . The rate of kinetic energy
dissipation of species i , Di , is(26)

Di =
√

2d√
π�d

miφi

r d+1
i

∑
j=l,s

χi j Rd
i j

(
1 + R ji

)d−1
φ j M ji

×
[

M ji

(
1 − e2

i j

) (
Ti

mi
+ Tj

m j

)
+ 2

(
1 + ei j

) Ti − Tj

mi j

] (
Ti

mi
+ Tj

m j

)1/2

, (16)
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where M ji ≡ m j/mi j . The total rate of kinetic energy dissipation is simply
D = Dl + Ds . We can split Eq. (16) into two terms:

1. The inter–species collisional dissipation rate, D I
i ,

D I
i ≡

√
2d√

π�d

∑
j

χi j Rd
i j (1 + R ji )

d−1 M2
j i (1 − e2

i j )

×φiφ j

r d+1
i

T 3/2
i

m1/2
i

(
1 + mi Tj

m j Ti

)3/2

. (17)

2. The exchange collisional dissipation rate, DE
i ,

DE
i ≡ 2

√
2d√

π�d
χik Rd

ik(1 + Rki )
d−1 Mik Mki (1 + eik)

×φiφk

rd+1
i

T 3/2
i

m1/2
i

(
1 − Tk

Ti

) (
1 + mi Tk

mk Ti

)1/2

, (18)

with k �= i .

Note that
∑

i=l,s DE
i = 0, and the exchange term DE

i is a consequence of the non–
equipartition assumption. On the other hand, with the equipartition assumption
(Tl = Ts = T ), DE

i = 0 and Eq. (17) reduces to:

Di =
√

2d√
π�d

∑
j

χi j Rd
i j (1 + R ji )

d−1 M2
j i (1 − e2

i j )
φiφ j

m1/2
i r d+1

i

(
T

M ji

)3/2

.

2.2.2. Nonequipartition of Granular Energy

It is worthwhile now to comment on the breakdown of the equipartition par-
tition principle for a granular mixture. Physically the lack of energy equipartition
is determined by the different dissipation rates (17) and (18). An obvious question
is, “How each species will attain a different granular temperature?” The answer to
this question depends on the balance between the external power injected into the
system and the energy dissipation rates for the two species,(22,24–26) for example,
in a vibrofluidized bed.

Before formulating a theory for segregation, it is important to have an estimate
of the granular energy ratio Tl/Ts in a fluidized granular mixture. An adequate
description of the vibrofluidized granular system requires a careful analysis of
the steady version of the species energy balance equations as described above. To
formulate the associated boundary-value problem, however, we need to impose
appropriate boundary conditions at the base-plate and the free surface of the
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vibrofluidized mixture. The problem of boundary conditions to be satisfied for the
granular hydrodynamic equations of a vibratory monodisperse system has been
studied,(32) but such studies for binary and polydisperse mixtures do not exist.
Hence the complete solution of the boundary-value problem for a vibrofluidized
mixture is left to a future effort.

In the results presented below, we have rather used the granular energy ratio
of Barrat and Trizac(26) which was derived for a randomly heated granular gas
(see Section 4). Their expression has subsequently been verified in the molecular
dynamics simulations(31) on vibrated granular mixtures. Paolotti et al.(31) showed
that the granular energy ratio remains constant in the bulk of the mixture, with the
variations of Tl/Ts with height being concentrated in two boundary layers near
the base plate and the free surface. The experiments(27) also showed the existence
of a constant Tl/Ts in the bulk.

3. THEORY OF SEGREGATION

To illustrate how the segregation dynamics can be described by a hydrody-
namic approach, we make the following approximations:

• We assume that the granular medium is in a fluidized state. The fluidized
state can be realized when the granular material is vibrated strongly in the
vertical direction, typically by a harmonic excitation z p(t) = A sin(ωt),
with the amplitude A and the frequency ω = 2π f . The normalized accel-
eration parameter (� ≡ Aω2/g) satisfies � 	 1.

• We assume that the system is in a regime where the bulk-convection and
the air-drag can be neglected.

• We neglect the viscous stresses (as well as any stress-anisotropy) for the
case where there is no overall mean flow in the system. For example, in
a typical experimental realization of a vertically vibrated bed the mean
velocity is zero (u = 0).

• We impose horizontal periodic boundary conditions to make the equations
analytically tractable. Therefore, the hydrodynamic fields vary only along
the vertical direction (∂/∂z(·) �= 0, but ∂/∂x(·) = 0 and ∂/∂y(·) = 0).

3.1. Segregation Dynamics: Evolution Equation

Here we outline the derivation of the evolution equation for the Brazil nuts.
With the above assumptions, the equations for the evolution of the granular mix-
ture, (1)–(3), (4) and (13), simplify considerably. Our starting point here is the
inviscid species momentum balance equations (4):

∂t ul = − 1

�l
∂z pl − g + 1

�l
�l, (19)
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∂t us = − 1

�s
∂z ps − g + 1

�s
�s . (20)

Subtracting Eq. (20) from Eq. (19) we obtain

�l∂t u
r
l = −∂z pl + �l

�s
∂z ps +

(
1 + �l

�s

)
�l , (21)

where ur
l = ul − us is the relative velocity of the larger particles. Now we need

expressions for ∂z pl and ∂z ps .
From the equation of state (6), we define the following weighted-ratio of two

partial pressures:(17)

�(φi , φi/φ j , ri/r j , Ti/Tj ) = ps/ns

pl/nl
= ps

pl

nl

ns
,

which depends on the species volume fractions, the volume fraction ratio, the
size-ratio and the temperature ratio. The partial derivative of pl is calculated from

∂z pl = ∂

∂z

(
ps

�

nl

ns

)
= ps

�

∂

∂z

(
nl

ns

)
+ nl

ns

(
1

�

∂ps

∂z
− ps

�2

∂�

∂z

)
.

Substituting this in Eq. (21) and using the expression for ∂z ps in Eq. (20) (and
after some algebraic manipulations), we arrive at the following evolution equation
for ur

l :

�l∂t u
r
l = nl

[
ms

(
Zl

Zs

Tl

Ts

)
− ml

]
g +

[
1 + nl

ns�

]
�l

−pl∂z

[
ln

(
nl

ns�

)]
+ nl

[
ms

(
Zl

Zs

Tl

Ts

)
− ml

]
∂t us . (22)

In the following we focus on the tracer limit of this equation for a mixture where
the number density of intruder (larger) particles is much smaller that of the smaller
particles, i.e. nl 
 ns . In this tracer limit (nl 
 ns), the intruders are assumed to
stay far away from each other (this, of course, implies that larger and smaller
particles are homogeneously mixed initially) and they do not influence each-
other’s motion; in fact, as explained by Lopez de Haro and Cohen,(33) except for
the mutual and thermal diffusion coefficients, the transport coefficients of binary
mixtures with one tracer component can be obtained from the general expressions
of corresponding transport coefficients by taking the limit nl/ns → 0.

For analytical simplicity, we make two assumptions: (1) the global temper-
ature of the bed T does not vary with height (see, for example, the experiments
in ref. 34); (2) the temperature ratio Tl/Ts remains constant in the bulk which
has also been verified in experiments(27) as well as in simulations(31) of vibrated
granular mixtures. In the dense collisional regime of a mixture with nl 
 ns and
∂zT = 0, the term associated with the momentum exchange in Eq. (22) can be
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approximated by:(
1 + nl

ns�

)
�l ≈ �l ≈ pl

(
Ts

Tl

)[
∂z

(
ln

(
nl

ns

))
− 4

rls

(
2mlms

πmls T

)1/2

(ul − us)

]
.

Furthermore, in this limit, it can be shown that Zl/Zs ≈ φ2/2 and hence
∂z ln(Zl Tl/Zs Ts) ≈ ∂z ln φ2 = 2λ, where λ is the decay rate of the volume fraction
with height: ln φ = δ + λz. An approximate value for λ can be estimated from
the vibrofluidized experiments:(34) λrs < −0.05 (see Fig. 4c in ref. 34) which is
assumed to be valid in the dense regime. Now, the third term on the right-hand
side of Eq. (22) and the first term in the above expression can be combined to yield

pl

(
Ts

Tl

)
∂z

[
ln

(
nl

ns

)]
− pl∂z

[
ln

(
nl

ns�

)]

= pl

(
Ts

Tl
− 1

)
∂z

[
ln

(
φl

φs

)]
+ pl∂z

[
ln

(
Zl Tl

Zs Ts

)]
.

Hence, both these terms are of order O(λpl). With these assumptions and retaining
terms of same order in Eq. (22), the time-evolution equation for the relative velocity
of intruder particles ur

l is described by the following equation:

ml
dur

l

dt
=

[
ms

(
Zl

Zs

Tl

Ts

)
− ml

]
g − 4Kls T

rls

(
2mlms

πmls T

)1/2

ur
l

+
[

ms

(
Zl

Zs

Tl

Ts

)
− ml

]
dus

dt
, (23)

where all expressions are evaluated in the limit nl/ns → 0.
The above equation (23) contains all the information necessary to describe

the segregation dynamics of intruders in the tracer limit. The first term on the right
hand side is the net gravitational force acting on the intruder. Note that the second
term has a form similar to the Stokes’ drag force, which always acts opposite to the
intruder’s movement. The functional form of this term can be justified by recalling
the experimental observations of Zik et al.,(35) who found a linear dependence
of the drag force on the velocity of a sphere moving in a vibrofluidized granular
medium. This could be interpreted as a characteristic of the fluidized state of the
granular media. The last term represents a weighted coupling with the inertia of
the smaller particles. In the following subsection, we discuss the origin of these
forces in detail.

3.2. Segregation Forces

Let us now analyse different forces that are acting on the intruder as it
rises/sinks through the granular bed.
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3.2.1. Gravitational Forces: Buoyancy and Geometric Forces

We can decompose the net gravitational force in Eq. (23) on an intruder in
the following manner:

F = g

[
(ρs − ρl )Vl + ms

(
Tl

Ts
− 1

)
Zl

Zs
+ ms

(
1 − Vl

Vs

)
+ ms

(
Zl

Zs
− 1

)]
,

(24)
where Vi is the volume of a particle of species i . This net gravitational force is
composed of the following buoyant and geometrical forces:

• An Archimedean buoyancy force due to the weight of the displaced volume
of the intruder (Vl):

F A
b := Vl(ρs − ρl )g. (25)

• An analogue of the thermal buoyancy force due to the difference between
the two granular temperatures:

F T
b := β(Tl − Ts), (26)

where β = ms T −1
s (Zl/Zs) is the effective pseudo-thermal expansion co-

efficient. We call this pseudo-thermal buoyancy force. Note that this
force vanishes identically for a mixture of particles with elastic collisions
(ei j = 1).

• Due to the size–disparity between the intruder and the smaller particles,
the intruder has to overcome a compressive volumetric strain, εst

v := (Vl/

Vs − 1). This results in a static compressive force of the form:

F st
ge := −msgεst

v , (27)

This force is always negative since the intruder has to rise against gravity.
• A dynamic tensile force from the pressure difference due to the interaction

between the intruder and the smaller particles:

Fdyn
ge := msgεdyn

v , (28)

where ε
dyn
v := (Zl/Zs − 1) ≥ 0 can be associated with a weighted volu-

metric strain, tensile in nature.

The last two forces (27) and (28) are not related to standard buoyancy argu-
ments. Thus, purely geometric effects due to the size-disparity contribute two new
types of segregation forces:

Fge = F st
ge + Fdyn

ge = −ms

(
εst
v − εdyn

v

)
g. (29)

Overall, the collisional interactions help to reduce the net compressive force that
the intruder has to overcome.
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It is interesting to find out whether we could get back the standard Archimedes
law from Eq. (24). This corresponds to the case where a large particle is immersed
in a sea of small particles with rl 	 rs . For this limit, it follows that(19)

Fdyn
ge → ms(Vl/Vs − 1) = −F st

ge (30)

and the net geometric force is

Fge ≡ 0. (31)

Thus, the net gravitational force on a particle falling/rising in an otherwise quiscent
fluid (at the same temperature) boils down to the Archimedean buoyancy force:

F = F A
B = g(ρs − ρl )Vl . (32)

3.2.2. Unsteady Forces: The Added Mass Effect

We have noted in the previous section that the inertia of the smaller particles is
directly coupled with the motion of the intruder in the evolution equation (viz. Eq.
23). For this unsteady (inertial) force tF also, we follow our earlier decomposition:

t F = dus

dt

[
(ρs − ρl )Vl + ms

(
Tl

Ts
− 1

)
Zl

Zs

+ ms

(
1 − Vl

Vs

)
+ ms

(
Zl

Zs
− 1

)]
. (33)

It is evident now that the net unsteady term has contributions from the standard
added mass force along with two new forces as described below.

• As in the unsteady-motion of a particle in a fluid, the intruder in a granular
mixture has to rise along with its surrounding smaller particles. The ‘added’
inertia of the displaced smaller particles that are being carried by the
intruder gives rise to an effective added mass force(36) on the intruder:

t Fam = Vl (ρs − ρl)
dus

dt
. (34)

As expected, this force vanishes if the material density of the intruder is
the same as that of smaller particles.

• A thermal analog to the added mass force, due to the difference between
the two granular temperatures, is given by:

t F T
am = ms

Zl

Zs

(
Tl

Ts
− 1

)
dus

dt
. (35)
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This force vanishes identically for Tl = Ts that holds if the particle col-
lisions are perfectly elastic. Hence this represents a new force for the
granular system.

• Lastly, we have exact analogues of the two geometric forces as described
in the previous section:

t F ge
am = ms

(
1 − Vl

Vs

)
dus

dt
= −msε

st
v

dus

dt
. (36)

t F ge
am = ms

(
Zl

Zs
− 1

)
dus

dt
= msε

dyn
v

dus

dt
. (37)

While the former is the analog of static ‘compressive’ geometric force, the
latter is the analog of the dynamic ‘tensile’ geometric force as discussed
in the previous section. Both these forces vanish if the intruder is of the
same size as the bed-materials.

Thus, we have shown that the last term in the evolution equation (23) can be
represented by an weighted added-mass force.

4. PHASE DIAGRAM FOR BNP/RBNP TRANSITION

AND THE REVERSE BUOYANCY EFFECT

To proceed in the simplest possible way, we first consider the steady-state
solution of equation (23)– in this case the added-mass forces do not influence the
onset of segregation. Neglecting transient effects, the steady relative velocity of
the intruder can be obtained from

ur
l = rlsg

4Kls

(
πmls

2mlms T

)1/2 [
ms

(
Zl

Zs

Tl

Ts

)
− ml

]
. (38)

Setting this relative velocity to zero, we obtain the criterion for the transition from
BNP to RBNP:

ms

(
Zl

Zs

Tl

Ts

)
− ml = 0, (39)

which agrees with the expression of Jenkins and Yoon(17) for the case of equal
granular energies (Tl = Ts), i.e. Zl/Zs = ml/ms . We have already noted in our
previous paper (19) that the non-equipartition of granular energy (Tl �= Ts) that
arises from the dissipative nature of particle collisions must be incorporated into
the theory to correctly describe many experimental findings.



602 Alam, Trujillo, and Herrmann

As mentioned before, the energy ratio, RT = Tl/Ts , is calculated from the
model of Barrat and Trizac:(26)

C1 R3/2
T + C2

(
1 + ms

ml
RT

)3/2

+ C3

(
1 + ms

ml
RT

)1/2

(RT − 1) + C4 = 0,

(40)
where

C1 = 2d−1
(
1 − e2

ll

)
φl Rd

slχll

(
ms

ml

)3/2

,

C2 =
√

2
(
1 − e2

ls

)
(1 + Rsl )

d−1
(
φs M2

sl ,−φl Rd
sl M2

ls

)
χls,

C3 = 2
√

2(1 + els)(1 + Rsl)
d−1 Msl

(
φs Msl + φl Rd

sl Mls

)
χls,

C4 = −2d−1
(
1 − e2

ss

)
φs Rd−1

sl χss .

To draw the phase-diagram in the (ml/ms, rl/rs)-plane, we need to solve the seg-
regation criterion (39) in conjunction with the expresion for Tl/Ts (40). This leads
to a quadratic polynomial for the mass-ratio ml/ms , resulting in multivaluedness
for ml/ms below a critical value of the size-ratio rl/rs as we discuss in the fol-
lowing. We note that another choice of Tl/Ts , as suggested by one of the referees,
does not change the qualitative nature of our results.

In Fig. 1 we plot the phase diagram for the BNP/RBNP transition for a
mixture of spheres in the tracer limit (φl/φs = 10−8) at a total volume fraction of
φ = 0.5. Note that this volume fraction is well below the value that corresponds
to the perfect cubic-packing (φ = π/6 ≈ 0.52), implying that the mixture is in the
‘liquid’ regime. Each solid curve in Fig. 1, for a specified restitution coefficient,
demarcates the zones of BNP and RBNP transition. We observe that the qualitative
nature of the phase-diagram changes even if the particles are slightly inelastic
(e = 0.99); for example, the mass-ratio (ml/ms) is a multi-valued function of the
size-ratio for e �= 1, in contrast to the perfectly elastic case (denoted by the dashed
line). The effect of dissipation is to introduce a threshold size-ratio above which
there is no RBNP. Moreover, the zone of RBNP shrinks dramatically when the
particles are more dissipative; for this parameter combination, there is no reverse
segregation for moderately dissipative particles e < 0.8. We shall come back to
discuss this point in the next subsection in connection with the reverse-buoyancy
effect.(10)

As discussed in our previous paper,(19) we need to look at various segregation
forces to understand the driving mechanism for BNP/RBNP transition. First, we
focus our attention to a mixture of equal density particles (ρl = ρs); this case is
easily amenable to experiments by using the intruder and the smaller particles of
the same material.
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Fig. 1. (color online) Effect of inelasticity on the phase diagram for BNP/RBNP in three dimensions:
φ = 0.5 and φl/φs = 10−8. The dotted line represents a mixture of equal density particles (ρl = ρs ):
ml/ms = (rl/rs )3.

For an equal density mixture, the variations of different segregation forces
with the size-ratio are plotted in Fig. 2. The coefficient of restitution is set to 0.95.
Since ρl = ρs , the Archimedean buoyancy force, F A

b ∝ (ρl − ρs), is identically
zero as shown by the dotted horizontal line in Fig. 2. The upper inset in Fig. 2 shows
the variations of two geometric forces, and the net geometric force, Fge, is negative
as shown by the dot-dash line. However, the pseudo-thermal buoyancy force,
F T

b ∝ (Tl − Ts), is positive and increases with increasing size-ratio. Thus, the
net gravitational force, F = Fb + Fge ≡ F T

b + Fge, can be positive/negative when
F T

b greater/less than Fge, respectively, with the equality being the BNP/RBNP
transition point. The solid line in Fig. 2 shows the variation of the net gravitational
force F that changes sign at a size-ratio of rl/rs ≈ 2.6 above which the intruder
rises (BNP) and below which it sinks (RBNP). Clearly, this threshold size-ratio is
decided by a competition between the buoyancy forces and the geometric forces,
leading to the onset of BNP/RBNP transition.(19) Note that for a mixture of particles
with elastic collisions (e = 1), the pseudo-thermal buoyancy force is F T

b = 0 and
hence F ≡ Fge < 0; the intruder in such a mixture will, therefore, sink for the
parameter combinations of Figs. 1 and 2.

Now we focus on a mixture with the mass-ratio, ml/ms , between the intruder
and the bed-particles being fixed; this can be realized in experiments by fixing
the bed materials (glass beads or steel balls, etc.) and subsequently by varying the
size and the density of the intruder. The variation of segregation forces with the
size-ratio is shown in Fig. 3 for ml/ms = 10; other parameters are as in Fig. 1.
Both the buoyancy and geometric forces are negative at Rls = 1 as seen in Fig. 3a.
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Fig. 2. (color online) Variations of segregation forces (F/ms g) with the size-ratio for a mixture of
equal-density particles (ρl = ρs ) at e = 0.95. The dotted arrow indicates the locus of the transition
BNP ⇔ RBNP. The upper inset shows the variations of the static and dynamic contributions to the

total geometric force (Fge = F st
ge + Fdyn

ge ) with the size-ratio. The lower inset shows the variation of

Tl/Ts with the size-ratio.(26)

While the net buoyancy force increases with the size-ratio, the net geometric
force decreases in the same limit, and again the competition between these two
forces decides the onset of BNP/RBNP. We observe in Fig. 3b that the pseudo-
thermal buoyancy force F T

b remains positive only upto a size-ratio of Rls ≤ 11.8
and becomes negative thereafter (this is a consequence of the energy-ratio Tl/Ts

being less than 1 for Rls > 11.8, see inset in Fig. 3b). For this mixture, however,
the Archimedean buoyancy force overwhelms its pseudo-thermal counterpart (i.e.
F A

b 	 F T
b ) beyond a moderate size-ratio of Rls > 3. Hence, it is the competition

between the Archimedean buoyancy force and the geometric forces that mainly
determines the threshold size-ratio for the BNP/RBNP transition (Rls ≈ 2.5) for
this case.

4.1. Reverse Buoyancy and Beyond

In 1998 Shinbrot and Muzzio(10) discovered an interesting effect: even though
large heavy intruders can rise to the top in a vibrofluidized mixture of smaller
particles, relatively lighter intruders of the same size can sink to the bottom. This
is in contradiction to common expectation and has been appropriately dubbed the
reverse buoyancy effect. (Strictly speaking, however, the rising-phenomenon of
‘heavier’ intruders is also a reverse-buoyancy effect.) In the following we refer to



Hydrodynamic Theory for Reverse Brazil Nut Segregation 605

Fig. 3. (color online) (a) Variations of segregation forces (F/ms g) with the size-ratio for a mixture
with fixed mass-ratio (ml/ms = 10) at e = 0.95. The dotted arrow indicates the locus of the transition
BNP ⇔ RBNP. The upper inset shows the variations of the static and dynamic contributions to the

total geometric force (Fge = F st
ge + Fdyn

ge ) with the size-ratio. The lower inset shows the variation of

Tl/Ts with the size-ratio. (b) Variations of Archimidean (F A
b ) and thermal (FT

b ) buoyancy forces with
rl/rs , with parameter values as in (a). The arrow on the FT

b -curve indicates the size-ratio above which
FT

b < 0.
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the sinking-phenomenon of ‘lighter’ intruders (ρl/ρs < 1) as the reverse-buoyancy
effect as in Shinbrot and Muzzio.

To explore whether our model is able to explain this effect or not, we have
fixed the size-ratio at Rls = 2.5, and changed the mass-ratio by varying the density-
ratio; again this can be realized in experiments by varying the material density of
either the intruder or the smaller particles. Figure 4a shows the onset of the reverse
buoyancy effect where we have plotted the variations of different segregation forces
with the mass-ratio, ml/ms , with other parameter values as in Fig. 2. To contrast
the mass-ratio and density-ratio effects simultaneously, the same figure is redrawn
in Fig. 4b, with the abscissa now representing the density-ratio, ρl/ρs . For a fixed
size-ratio, the net geometric force remains constant as shown by the dot-dash
line in Fig. 4. The upper inset in Fig. 4 shows the Archimedean and pseudo-
thermal contributions to the total buoyancy force; while F T

b increases with the
mass-ratio, F A

b decreases in the same limit, and the total buoyancy force varies
non-monotonically with both mass- and density-ratios.

Focussing on the mass-ratio of ml/ms = 30 (the density-ratio is ρl/ρs ≈
1.98) in Fig. 4, we note that the net gravitational force is positive, i.e. the heavier
intruder will rise to the top (which is the BNP). Looking at the upper inset in Fig.
4a, we find that it is the pseudo-thermal buoyancy force that drives the intruder
to the top (at such large density-ratios). Now if we decrease the mass of the
intruder (by decreasing its material density ρl ) to ml/ms ≈ 25 (that corresponds
to a density-ratio of ρl/ρs ≈ 1.6), the net gravitational force becomes negative.
Hence this relatively lighter intruder (ρl/ρs < 1.6) will now sink to the bottom
(i.e. which is the RBNP). When we lower the density-ratio even below unity, the
lighter intruder sinks to the bottom as observed in Fig. 4b. This is nothing but the
reverse-buoyancy effect of Shinbrot and Muzzio:(10) although the heavier intruder
can rise to the top, equally large but a relatively lighter intruder can sink.

It is interesting to observe in Fig. 4 that there is a window of mass- and density-
ratios (10 < ml/ms < 25 and 0.64 < ρl/ρs < 1.6) for which the net gravitational
force remains negative and hence the intruder will sink. For ρl/ρs < 0.64, however,
the Archimedean buoyancy force prevails over other forces and the lighter intruder
rises to the top (as observed in the upper inset of Fig. 4b). This implies that if
the material density of the intruder is much less than that of the bed particles,
the intruder will eventually show the standard buoyancy effect (which is again the
BNP).

To understand the origin of reverse buoyancy, we consider particles with
perfectly elastic collisions (e = 1), for which Tl = Ts and F T

b = 0; hence the net
gravitational force, F ≡ F A

b + Fge, will decrease monotonically with increasing
size-ratio as shown by the red-line in the lower inset of Fig. 4b. In such a mixture
of elastic particles, an intruder with Rρ1 = ρl/ρs > 0.44 will sink (i.e. the reverse
buoyancy), and this threshold density-ratio is less than unity since the lighter
intruder has to overcome the net compressive geometric force. Thus, the onset of
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Fig. 4. (color online) (a) Onset of reverse buoyancy effect in terms of segregation forces: variations of
F/ms g with the mass-ratio for a mixture with rl/rs = 2.5. Parameter values are φ = 0.5, φl/φs = 10−8

and e = 0.95. The vertical arrows indicate the loci of the transition BNP ⇔ RBNP. The upper inset
shows the variations of the Archimedean and pseudo-thermal contributions to the total buoyancy force
(Fb = F A

b + FT
b ) with the mass-ratio. The lower inset shows the variation of Tl/Ts with the mass-ratio.

(b) Same as in a but with density-ratio, ρl/ρs . The redline in the lower inset shows the variation of
F A

b + Fge.

reverse buoyancy results from a competition between the Archimedean buoyancy
force and the net compressive geometric force.

The effect of the pseudo-thermal buoyancy force (for dissipative particles)
is simply to increase this threshold density-ratio to Rρ1 ≈ 0.64 for parameter
combinations of Fig. 4, and create another threshold density-ratio at Rρ2 ≈ 1.6,
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above unity, beyond which the heavier intruder rises to the top (i.e. BNP). Thus, the
lower threshold density-ratio Rρ1 is created by the geometric forces and the higher
threshold density-ratio Rρ2 is created by the pseudo-thermal buoyancy force.

It is interesting to point out that the threshold density-ratio Rρ2 at which the
RBNP occurs depends crucially on the overall mean volume fraction (that can be
related with the shaking strength of the vibrator, see Section 4.2) of the fluidized
bed. For example, by reducing the mean volume fraction, Rρ2 can be pushed below
unity.

Thus, our model predicts that the intruder will show the BNP for ρl/ρs 	 1
and ρl/ρs 
 1. While the BNP in the former limit is driven by the pseudo-thermal
buoyancy force, the BNP in the latter limit is driven by the Archimedean buoyancy
force. For intermideate values of density-ratios, the intruder will show the RBNP
(and the reverse buoyancy) which is driven by a competition between the buoyancy
and geometric forces.

Now we make a few comments on the experimental realizations of reverse
buoyancy. The range of size-ratios for which our model predicts the reverse buoy-
ancy effect is of order Rls = O(5) for the coefficient of restitution e < 0.99; for
larger values of Rls our model predictions show the standard Brazil-nut segrega-
tion. However, this critical size-ratio can be pushed to a much higher value by
considering higher values of e; this is equivalent to reducing the magnitude of
the pseudo-thermal buoyancy (F T

b ), since F T
b vanishes as the energy ratio Tl/Ts

approaches its equipartition value for perfectly elastic system (e = 1).
More recently, Yan et al.(37) have also observed the reverse buoyancy effect

for a range of size-ratios varying between 25 to 36; the diameter of their bed-
particles was less than 250 µm. Interestingly, the critical density at which this
transition ocurred was Rρ2 = ρl/ρs ≈ 0.7. But the interstitial air-pressure has
played a crucial role in their experiments since they could not observe RBNP
when the experiments were performed at a reduced air-pressure (0.1 atm). Thus,
the missing link could be provided by the air-drag that we have neglected in our
analysis.

Our predictions of a transition to BNP for very light intruders (at Rρ 

Rρ1) has been recently observed by Huerta and Ruiz-Suarez.(39) Their ex-
periments at high frequencies ( f = 50 Hz and � = 3) would closely mimic
most of our assumptions since bulk-convection was negligible in their experi-
ments. More careful experiments at vacuum are needed to map out the whole
phase-diagram.

4.2. Effect of Shaking Strength

Here we consider the effect of the shaking strength of vibration on the
BNP/RBNP transition. In typical vibrofluidized-bed experiments, the mixture is
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Fig. 5. (color online) Effect of mean volume fraction on the phase diagrams for BNP/RBNP in
three dimensions: e = 0.95 and φl/φs = 10−8. The dashed arrow indicates the direction of increasing
shaking strength �.

vibrated via a sinusoidal excitation of the base-plate:

z p(t) = A sin(2π f t), (41)

where A is the amplitude of vibration and f is its frequency. The shaking strength
of vibration can be measured via the following non-dimensional number

� = A(2π f )2

g
. (42)

Ideally, the fluidized regime corresponds to both large-amplitude and high-
frequency vibrations which can be related to the case � 	 1. Note that this
condition, � 	 1, can be realized either by increasing the shaking amplitude at
fixed f or by increasing the shaking frequency at fixed A.

In the fluidized-regime, the bed expands with increasing shaking strength
�, leading to a decrease in the overall volume fraction of the mixture φ. Thus,
the effect of � on the phase-diagram for BNP/RBNP can be tied to the effect
of varying the mixture volume fraction φ. This is shown in Fig. 5 where we
have plotted three curves for different volume fractions (φ = 0.1, 0.3, 0.5) with
φl/φs = 10−8. We observe that the range of size- and mass-ratios, for which
the RBNP exists, increases with decreasing φ. This implies that the possibility of
RBNP will increase with increasing shaking strength �. The experimental findings
of Breu et al.(13) showed similar trends with �, which our model is able to mimic.

To understand the effect of mean volume fraction on the BNP/RBNP transi-
tion, we analyse different segregation forces for a given size-ratio and mass-ratio
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(say, at rl/rs = 4 and ml/ms = 40 in Fig. 5). For this, both the Archimedean buoy-
ancy force F A

b and the static geometric force F st
ge do not vary with φ. The dynamic

geometric force Fdyn
ge , however, decreases with decreasing φ. In this limit, the col-

lision frequency decreases that decreases the collisional pressure, and hence the
intruder will become relatively less mobile. For this case, even though the granular
energy ratio do not vary appreciably with φ, the pseudo-thermal buoyancy force
F T

b will decrease with φ as a result of a decrease in the value of Zl/Zs . Both these
effects result in a lower value of the ‘upward’ force on the intruder and hence
the intruder will show the RBNP with decreasing mean volume fraction (i.e. with
increasing shaking strength). For these parameter conditions, the mean density at
which the BNP/RBNP transition occurs is about 0.284.

4.3. Effect of Intruder Volume Fraction

So far we have shown results for a binary mixture in the tracer limit of
intruders (i.e. φl/φs = 10−8). Recall from Fig. 1 that the zone of RBNP shrinks to
zero as we make the particles more and more dissipative since the pseudo-thermal
buoyancy force increases in the same limit. Hence, the RBNP is unlikely to occur
in the tracer limit for moderately dissipative particles.

To probe the effect of the volume fraction of the intruders, we show the
phase-diagram for the BNP/RBNP transition in Fig. 6 for three relative volume

Fig. 6. (color online) Effect of the relative volume fraction of intruders on the phase diagram for
BNP/RBNP in three dimensions: φ = 0.5 and e = 0.95.
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fractions: φl/φs = 10−8, 0.1 and 1. The other parameters are as in Fig. 2. As we
increase the relative volume fraction of the intruders, the ranges of mass- and
size-ratios for which the reverse segregation (RBNP) occurs increase sharply. It
is interesting to recall that most of the experiments of Breu et al.(13) correspond
to the case where the number of layers of each species was equal; this translates
into φl > φs . However, when they reduced the number density of larger particles
they could not observe RBNP (with other conditions remaining the same). Also,
the recent experiments of Yan et al.(37) (at reduced air-pressures) do not show
RBNP. Our model predictions are, therefore, in qualitative agreement with these
experimental findings. Clearly, more experiments are needed to map out the correct
phase-diagram for various volume fractions of the intruders.

5. DYNAMICS OF INTRUDERS IN TRACER LIMIT:

NONMONOTONIC RISE TIME

As an application of our theoretical framework, we now consider the dynamics
of intruders in the tracer limit (nl 
 ns) and determine the intruder’s relative
velocity ur

l and its rise-time. (Hereafter, the dynamics of intruder particles in
the tracer limit is considered to be that of a single intruder in a bed of small
particles.) Note that these two quantities have been measured(5,6,39) in many Brazil-
nut experiments.

To probe the motion of the intruder, we need to know the macroscopic
velocity-field us of the smaller particles a priori. Let the system be excited by a
periodic force in the vertical direction with a (symmetric) harmonic displacement:
z p(t) = A sin(ωt). We assume that the vibrofluidized state of the smaller particles
is coupled to this periodic movement, and make the following approximation for
the velocity us of the smaller particles:

us ≈ dz p

dt
= −Aω cos(ωt). (43)

This simply implies that the smaller particles follow the motion of the base plate
which is a reasonable assumption for shakings at a high frequency but with low
amplitudes (� 	 1).

We need to estimate the granular temperature of the mixture T which appears
in the drag term in the evolution equation (23). In the tracer limit (nl 
 ns), the
mixture granular temperature would be that of an equivalent monodisperse system
of smaller particles;(33) we have already assumed that the granular temperature is
uniform throughout the bed. Considering this homogeneous-state of fluidization,
the global temperature can be estimated by equating the rate of energy input
through the bottom plate with the rate of energy loss due to inelastic particle
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collisions:(38)

T = 1√
2π

ms Sp

Nr2
s

(Aω)2

(1 − e2
ss)

. (44)

Here Sp is the surface area of the base-plate and N is the total number of particles.
As demonstrated in many earlier studies, this provides a reasonable approximation
for the average temperature of the bed, and represents the leading-order solution
even in the dense limit.(38) We assume that in the fluidized state the height of the
bed is H . Thus, the expression for the global temperature can be rewritten as

T =
√

2

3

ms A2ω2

φs RH Rls(1 − e2
ss)

. (45)

where

RH = H

2rl
(46)

is the non-dimensional bed-height as a multiple of the intruder-diameter, and
Rls = rl/rs the size-ratio.

Let us introduce the following reference scales for non-dimensionalization:

ur
l = ur

l
u R

= ur
l

Aω

T = T
TR

= T
ms A2ω2

t = t
tR

= t
ω−1


 (47)

where the quantities with overbars are non-dimensional. Hereafter, for conve-
nience, we will drop the overbar on the non-dimensional quantities. With this
scaling, the non-dimensional granular temperature has the following expression:

T =
√

2

3φs RH Rls(1 − e2
ss)

. (48)

The evolution equation (23) in non-dimensional form can now be written as

dur
l

dt
= α(�−1 − sin t) − βur

l (49)

where

β = β0 RA

√
T (50)

is the non-dimensional drag coefficient which is a function of the bed-temperature
T and the amplitude of the harmonic-shaking

RA = A

2rl
. (51)
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Here α and β0 are non-dimensional functions of the size-ratio, mass-ratio and
volume fraction:

α =
(

ms

ml

Zl

Zs

Tl

Ts
− 1

)

β0 = 8Kls

(
Rls

Rls + 1

) (
2

π

ms

ml
Msl

)1/2

Kls = 1

4
φsχls(1 + Rls)3

Msl = ms

ml + ms

Rls = rl

rs
.

The solution to the differential equation (49), with initial condition
ur

l (t)|t=0 = 0, is given by

ur
l (t) = α

β�
(1 − e−βt ) −

(
α

1 + β2

)
(e−βt − cos t + β sin t). (52)

The temporal evolution of the position of the intruder, zl(t), can be obtained by
integrating Eq. (52):

zl(t) = αRA

β2�
(βt + e−βt ) − αRA

β2�
(1 + β�) + z0

+
(

αRA

β(1 + β2)

)
(e−βt + β sin t + β2 cos t) (53)

with z0 ≡ zl(0) being the position of the intruder at time t = 0. Note that zl has
been non-dimensionalized by the diameter of the intruder.

5.1. Rise Time: Non-monotonicity and Experiments

By knowing the steady relative velocity of the intruder ur
l , we can calculate

its rise-time τ :

τ = 2rl

ur
l

= 2rlβ�

α
. (54)

This is the (non-dimensional) time that the intruder will take to travel a height of
one intruder diameter. In the following we have plotted the rise-time in cycles.

First, we consider an intruder of a given size-ratio (Rls = rl/rs = 2.5) and
vary its density; further, we assume the equipartition assumption Tl = Ts . For this
case, the variation of the rise-time with the density-ratio, Rρ = ρl/ρs , is shown in
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Fig. 7. (color online) (a) Variations of rise (/sink) time τ (in cycles) with density-ratio for Tl = Ts ; the
parameter values are as in Fig. 4. The shaking parameters are � = 5, f = 50 Hz; the intruder diameter
is 4.97 cm and the bed-height RH = H/(2rl ) = 10. (b) Same as a with non-equipartition assumption.
The inset in each panel shows the variation of the intruder’s relative velocity, ur

l , with the density-ratio.
The vertical lines in each panel refer to density-ratios for the BNP/RBNP transition.

Fig. 7a; other parameters are as in Fig. 4. The parameters for base-plate excitations
are � = 5 and f = 50 Hz; we set the bed-height to RH = H/(2rl) = 10. As
expected, τ diverges at the onset of BNP/RBNP (Rρ1 ≈ 0.64) since the intruder
velocity, ur

l changes its sign at this threshold density as seen in the inset of Fig. 7a.
For Rρ > Rρ1, the sink-time decreases, implying that the heavier intruders sink
faster; for Rρ < Rρ1, the lighter intruders rise faster.
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Fig. 8. Variation of rise time τ (in cycles) with density-ratio for different size-ratios; the parameter
values are as in Fig. 5. The shaking parameters are as in Fig. 7.

Now we relax the equipartition assumption, i.e. Tl �= Ts , and plot the variation
of τ with Rρ in Fig. 7b. In contrast to the case in Fig. 7a, now we have the
pseudo-thermal buoyancy force acting on the intruder. This additional upward
force makes the intruder to rise again beyond Rρ > Rρ2. Interestingly, the rise-time
for Rρ > Rρ2 decreases with increasing density-ratio, implying that the heavier the
intruder the faster it rises. Such an effect has been observed in experiments.(12,37,39)

Within the window of the RBNP (Rρ1 < Rρ > Rρ2), we observe that the sink-
time varies non-monotonically and diverges at both the limits. For this parameter
combination, an intruder with Rρ = 1 will take about 15 cycles of excitation to
travel (sink) a distance of its diameter.

With other parameter conditions as in Fig. 7b, we increase the intruder size
such that we are in the zone of BNP (see Fig. 1). This is shown in Fig. 8 for three
different size-ratios (Rls = 3, 4, 5). It is interesting to note that the rise-time is
non-monotoic with the density-ratio. For a given size-ratio, there is a threshold
density-ratio (Rρ < 1) for the intruder above/below which it rises faster. This
threshold density-ratio shifts to a lower value with increasing size-ratio. Note
further that at a given density-ratio the larger the intruder the faster it rises in
conformity with our earlier observation in Fig. 7b.

Next we fix a large size-ratio of Rls = 10, and show the variation of τ

with the density ratio Rρ in Fig. 9 for four different restitution coefficients
(e = 0.999, 0.998, 0.997, 0.99). With increasing dissipation, the magnitude of the
energy-ratio, Tl/Ts , increases that generates additional pseudo-thermal buoyancy
force on the intruder, thereby increasing its velocity. Hence the intruder will move
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Fig. 9. Variation of rise time τ (in cycles) with density-ratio for different restitution coefficients. The
size-ratio is set to rl/rs = 10; other parameters as in Fig. 8.

faster and the height of the peak in the rise-rate curve decreases as observed in
Fig. 9.

5.2. Comparison with Experiments

In order to verify the possible effects of convection,(4) here we make a qual-
itative comparison of our predictions on the rise time with the recent experiment
results of Huerta and Ruiz-Suarez.(39) They performed two-sets of experiments to
test the effects of bulk convection, one at f = 5 Hz and � = 3 (i.e. the low fre-
quency but high amplitude limit), and the other at f = 50 Hz and � = 3 (i.e. the
high frequency but low amplitude limit). (They verified that the bulk-convection
was negligible in the high frequency limit, but was present in the low frequency
limit.) They observed that the rise-time is non-monotonic in the high-amplitude
(and low frequency) limit (see their Fig. 1), but in the absence of convection the
heavier particles sank (see their Fig. 3).

Note that most of the assumptions in our model are in tune with their high
frequency experiments since the convection effects are claimed to be negligible
in that limit. However, if the level of pseudo-thermal bouyancy force is small, the
window of the RBNP (Rρ1 < Rρ < Rρ2, refer to Fig. 7b) can be made arbitrarily
large as in Fig. 7a. In this case, the Archimedean buoyancy force competes with
geometric forces, thereby deciding the dynamics of the intruder for Rρ > Rρ1 as
in our Fig. 7a which looks remarkably similar to Fig. 3 in ref. 39.
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Moving onto their low frequency experiments, we need to consider the ad-
ditional effects of bulk-convection. Note that the bulk-convection generates an
upward-plume at the center of the container, and two ‘narrow’ downward plumes
near the side-walls; clearly, the granular energy of the particles within the center-
plume will be much greater than that of bulk material, and this would lead to
another competing force on the intruder. Under the present formalism, this addi-
tional force would reinforce the pseudo-thermal buoyancy force. Thus, the effective
pseudo-thermal buoyancy force will increase in the presence of convection, lead-
ing to an over-turning of the phase-coexistence line beyond a critical size-ratio
(refer to our Fig. 1). Hence the added effect of bulk-convection is to take us to the
regime of BNP and the heavier particles will also rise. This is precisely what we
see in Fig. 1 of ref. 39. Therefore, in their low frequency experiments, the effective
pseudo-thermal buoyancy force would compete with the Archimedean buoyancy
force and geometric forces.

Lastly, we comment on the experiments of Möbius et al.(12) who first showed
that the rise-time of an intruder (rl/rs > 10) in a bed of small particles (rs =
250 µm) is non-monotonic with the density-ratio. They also showed that the peak
on the rise-time curve decreases in height and shifts to a lower density with
decreasing the air-pressure, and vanishes as the air-pressure approaches 1 torr.
It is conceivable that the decreased air-pressure has reduced the effective drag
on the intruder and thereby increased its velocity—hence the height of the peak
(maximum rise-time) decreases with decreasing air-pressure. But the shifting of
this peak to a lower density remains unexplained.

6. DISCUSSION

6.1. A Simple Explanation for RBNP: Boltzmann Limit

The reverse segregation effect can be understood by considering the
Boltzmann-limit (i.e. the dilute limit φ → 0) for which the equation of state
of species i is

pi = ni Ti .

By integrating the steady vertical momentum equation, we obtain an expression
for the number density profile of species i ,

ni (z) = ni (0) exp

[
−mi gz

Ti

]
, (55)

where we have assumed that Ti is independent of z. (This assumption implies that
the variation of number-density with z is due to the variation of partial pressure
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along z.) Hence, the ratio of number densities is

nl(z)

ns(z)
= nl (0)

ns(0)
exp

[
−ml

Tl

(
1 − Tl

Ts

ms

ml

)
gz

]
. (56)

For a mixture of particles with purely elastic collisions, the equipartition
principle holds, i.e., Tl = Ts . In this case, the particles segregate according to their
masses, driven by the Archimedean buoyancy force, and there is no segregation if
the particles are of the same mass. Thus, the heavier particles remain at the bottom
and lighter particles at the top, leading to the RBN effect.

Now considering inelastic particles of equal masses ml = ms but having
different sizes and densities, we know that Tl < Ts for all values of restitution
coefficient. This implies that the decay-rate of nl with z is faster than that of ns .
Hence the centre of mass of the larger-particles will be at a lower-level than that
of the smaller-particles,

〈zl〉cm

〈zs〉cm
< 1,

clearly leading to the RBN effect.

6.2. Higher-order Effects and Possible Experiments

The granular hydrodynamic model is a natural and convenient framework
for studying fluidized systems. It is nonetheless criticized for being overly sim-
plified and unrealistic.(14) In our analysis we have considered the hypothesis of a
Maxwellian velocity distribution function. Let us remark that the leading–order
solution of the Boltzmann–Enskog kinetic equation for granular mixtures is a
Maxwellian (see ref. 20), and the non–Gaussian correction term remains rela-
tively small.(31) More importantly, since the present theory is restricted to the
Euler-level description of hydrodynamic equations, we do not need to take into
account the corrections due to non-Maxwellian effects as explained in ref. 19.
Moreover, the Archimedean buoyancy force (F A

b ) and the static geometric force
(F st

ge) do not depend on the distribution function, and the non–Gaussian correction

does not affect the dynamic geometric force (Fdyn
ge ). Only the pseudo-thermal buoy-

ancy force (F T
b ) can be expressed in terms of the velocity distribution function.

Thus, the higher-order corrections would affect this bouyancy force—a detailed
investigation of this is left for a future investigation.

All the segregation forces are indirectly measurable in a standard vibrated–
bed setup, and thereby making them directly verifiable via experiments. For exam-
ple, the thermal buoyancy force (F T

b ) can be measured by measuring the granular
energies (Tl and Ts) from the snapshots of successive particle configurations.
These snapshots can also be used to measure the pair correlation function (χi j and

hence the compressibility factor Zi ) and the dynamic geometric force (Fdyn
ge ). The
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other two forces (F A
b and F st

ge) are then easily obtained. Knowing all these forces
from experiments, one could construct each term of our theory independently. We
hope that the present investigation will stimulate future experiments to measure
these quantities.

7. SUMMARY AND CONCLUSIONS

One of our motivations has been to explore whether the hydrodynamic–
description of granular materials can be applied to the derivation of a time–
evolution equation for the segregation velocity of intruders in a dense fluidized
bed. We have done that in our previous paper,(19) starting from the kinetic-theory
of binary mixtures. Based on this time–evolution equation, here we have tried to
provide a unified theoretical description for the segregation dynamics of Brazil-
nuts in a vibrated granular mixture.

We have discussed a novel mechanism for segregation and argued that the
onset of segregation is due to a competition between the buoyancy and geometric
forces. Apart from the standard Archimedean buoyancy force, we have introduced
the notion of a pseudo-thermal buoyancy force that results from the fact that the
intruder particle fluctuates at a different energy level than the smaller particles.
(The microscopic dissipation, due to the inelastic nature of particle-collisions,
is responsible for the non-equipartition of granular energy.) The size-difference
between the intruder and the bed-material results in two geometric forces, one
compressive and the other-one tensile in nature– the net geometric force is always
compressive. Thus, the net buoyancy force competes with the net compressive
geometric force, thereby deciding the onset of BNP/RBNP transition.

For a mixture of perfectly hard-particles with elastic collisions, the pseudo-
thermal buoyancy force is zero but the intruder has to overcome the net compressive
geometric force to rise. For this case, the competition between the net geometric
force and the Archimedean buoyancy force yields a threshold density-ratio, Rρ1 =
ρl/ρs < 1, above which the lighter intruder sinks, thereby signalling the onset of
the reverse buoyancy effect. For a mixture of dissipative particles, on the other
hand, the non-zero pseudo-thermal buoyancy force gives rise to another threshold
density-ratio, Rρ2 ( > Rρ1), above which the intruder rises again.

This theory is applied to study the dynamics of a single intruder (i.e. in
the tracer limit of intruders) in a vibrofluidized granular mixture, with the ef-
fect of the base-plate excitation being taken into account through a ‘mean-field’
assumption. The rise (/sink) time diverges near the threshold density-ratio for
reverse-segregation. The most interesting result is that the rise-time of the intruder
could vary non-monotonically with the density-ratio. For a given size-ratio (in the
zone of BNP), there is a threshold density-ratio for the intruder at which it takes
maximum time to rise and above(/below) which it rises faster. This implies that
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the heavier (and larger) the intruder, the faster it ascends; a similar effect has
been observed in some recent experiments.(12,39)The peak on the rise-time curve
decreases in height and shifts to a lower density-ratio as we increase the magnitude
of the pseudo-thermal buoyancy force.

The main message emerging from our analysis is that the pseudo-thermal
buoyancy force that results from the non-equipartition of granular energy (Tl �=
Ts) plays an important role in the segregation process. Even though the source
of this energy non-equipartition is inelastic dissipation, it can be argued that
the effects of the bulk-convection will also lead to a separation between the
granular energies of the intruder and the bed-particles even in the limit of perfectly
elastic collisions. Thus, the increased pseudo-thermal buoyancy force (i.e. with
increasing dissipation-levels in our model) can also be related to the presence of
the bulk-convective motion. In this connection it may be pointed out that a different
functional form for the equation of state (Eq. 6) might change the precise threshold
of segregation, but the presence of additional pseudo-thermal buoyancy force, for
example, due to convection, is likely to retain the overall phase-diagram similar.

It is remarkable that our theory can explain several experimental observations
in a unified manner, despite having many simplifying assumptions. In addition to
explaining the experimental results of Breu et al.(13) on the reverse Brazil-nut
segregation, we have suggested a plausible explanation for the origin of the onset
of the reverse-buoyancy effect of Shinbrot and Muzzio(10) as well as the origin of
the non-monotonic ascension-dynamics.(12,39) However, the effects of air-pressure
on the non-monotonic ascension-dynamics(12) seems to be more subtle and needs
further work. This can be done by considering a three-phase mixture, with separate
balance equations for the air and taking into account the resulting interactions on
both the smaller particles and the intruders. Lastly, the effects of Coulomb friction
and the particle roughness need to be incorporated in our model in future.
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